Leetcode 235.二叉搜索树的最近公共祖先

235. 二叉搜索树的最近公共祖先

题目

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

1
2
3
4
5
6
7
8
9
10
11
12
例如,给定如下二叉搜索树:  root = [6,2,8,0,4,7,9,null,null,3,5]

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。

方法

方法1:递归

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None

class Solution:
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
p_val=p.val
q_val=q.val
r_val=root.val

if p_val>r_val and q_val>r_val:
return self.lowestCommonAncestor(root.right,p,q)
elif p_val<r_val and q_val<r_val:
return self.lowestCommonAncestor(root.left,p,q)
else:
return root

Complexity Analysis

  • Time Complexity: O(N), where N is the number of nodes in the BST. In the worst case we might be visiting all the nodes of the BST.
  • Space Complexity: O(N). This is because the maximum amount of space utilized by the recursion stack would be N since the height of a skewed BST could be N.

方法2:非递归

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None

class Solution:
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
p_val=p.val
q_val=q.val

node=root
while node:
r_val=node.val

if p_val<r_val and q_val<r_val:
node=node.left
elif p_val>r_val and q_val>r_val:
node=node.right
else:
return node

Complexity Analysis

  • Time Complexity : O(N), where N is the number of nodes in the BST. In the worst case we might be visiting all the nodes of the BST.
  • Space Complexity : O(1).
  • Leetcode Solution