576.出界的路径数
题目
给定一个 m × n 的网格和一个球。球的起始坐标为 (i,j) ,你可以将球移到相邻的单元格内,或者往上、下、左、右四个方向上移动使球穿过网格边界。但是,你最多可以移动 N 次。找出可以将球移出边界的路径数量。答案可能非常大,返回 结果 mod 109 + 7 的值。
说明:
球一旦出界,就不能再被移动回网格内。
网格的长度和高度在 [1,50] 的范围内。
N 在 [0,50] 的范围内。
方法
方法1:动态规划 & 三维数组
思路:从坐标[i, j]到其上、下、左、右都需要移动1步,剩余N-1步,那么问题转化为从上、下、左、右移动N-1步,一共有多少种方法。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36class Solution(object):
def findPaths(self, m, n, N, i, j):
"""
:type m: int
:type n: int
:type N: int
:type i: int
:type j: int
:rtype: int
"""
dp=[[[0 for _ in range(n)] for _ in range(m)] for _ in range(N+1)]
for k in range(1,N+1):
for r in range(m):
for c in range(n):
if r==0:
up=1
else:
up=dp[k-1][r-1][c]
if r==m-1:
down=1
else:
down=dp[k-1][r+1][c]
if c==0:
left=1
else:
left=dp[k-1][r][c-1]
if c==n-1:
right=1
else:
right=dp[k-1][r][c+1]
dp[k][r][c]=(up+down+left+right)%1000000007
return dp[N][i][j]
方法2:动态规划 & 二维数组
At time t, let’s maintain dp[r][c] = the number of paths to (r, c) with t moves, and next[r][c] = the number of paths to (r, c) with t+1 moves.
A ball at (r, c) at time t, can move in one of four directions. If it stays on the board, then it contributes to a path that takes t+1 moves. If it falls off the board, then it contributes to the final answer.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29class Solution(object):
def findPaths(self, m, n, N, i, j):
"""
:type m: int
:type n: int
:type N: int
:type i: int
:type j: int
:rtype: int
"""
M=1000000007
count=0
dp=[[0 for _ in range(n)] for _ in range(m)]
dp[i][j]=1
for k in range(N):
next=[[0 for _ in range(n)] for _ in range(m)]
for r in range(m):
for c in range(n):
for dr,dc in zip((-1,1,0,0),(0,0,-1,1)):
if 0<=r+dr<m and 0<=c+dc<n:
next[r+dr][c+dc]+=dp[r][c]
next[r+dr][c+dc]%=M
else:
count+=dp[r][c]
count%=M
dp=next
return count